

NASA/TM-20205008125 iii

Table of Contents
Abstract ... 1
1.0 Introduction ... 1
2.0 EMTAT Setup ... 2

2.1 Notation .. 3
2.2 System Overview .. 3
2.3 EMTAT Quick Start Guide... 3

2.3.1 Installing EMTAT .. 3
2.3.2 Un-installing EMTAT .. 4
2.3.3 EMTAT examples .. 4
2.3.4 Block help .. 4

3.0 EMTAT Library Structure .. 5
4.0 EMTAT Simulation Creation ... 6

4.1 Simulation Setup ... 6
4.2 EMTAT Formatting .. 7

4.2.1 Simulink wiring .. 7
4.2.2 Mask format ... 7

4.3 Solver Setup .. 8
4.4 EMTAT Block Setup .. 9

4.4.1 Independent and dependent variables .. 10
4.4.2 iDesign ... 11

4.5 Customization ... 11
5.0 Troubleshooting EMTAT ... 12

5.1 Convergence “Errors” ... 12
5.2 Crashing .. 13

6.0 EMTAT Tutorials ... 14
6.1 EMTAT Example: BoostConverter_Example .. 14

References ... 17

NASA/TM-20205008125 iv

Figure Index
Figure 1.—Sample simulation architecture for a dynamic system. .. 6
Figure 2.—Sample EMTAT function block parameters mask. .. 7
Figure 3.—Motor Branch diagram. ... 9
Figure 4.—Example EMTAT Physics Based Buck Converter input mask showing the Physical
Parameters and iDesign tabs. .. 11
Figure 5.—Model configuration parameters setup. .. 15
Figure 6.—Run Boost Converter Example. .. 16

Table Index
Table 1.—EMTAT User’s Guide Notation ... 3
Table 2.—PowerFlow motor branch solver independent and dependent variables 10
Table 3.—Physics Based motor branch solver independent and dependent variables 10

NASA/TM-20205008125 1

Electrical Modeling and Thermal Analysis Toolbox (EMTAT)
User’s Guide

Mark E. Bell
HX5, LLC

Brook Park, Ohio 44142

Jonathan S. Litt
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract
This is the User’s Guide for the Electrical Modeling and Thermal Analysis Toolbox (EMTAT), a
graphical building block simulation tool for electrical components, designed specifically for Electrified
Aircraft Propulsion (EAP) applications. EMTAT is intended to model the electrical portions of EAP
systems, including self-heating of electrical systems. Dynamic models of EAP systems often include
turbomachinery, an electrical power system, and a thermal management system. These portions of the
propulsion system can operate on timescales covering six orders of magnitude, which poses a challenging
modeling task. EMTAT uses assumptions and approximations to capture the dynamics relevant to engine,
electrical system, and thermal system interactions, while still allowing for fast simulation execution.
These assumptions and approximations enable the electrical component models to run at the time scale of
the turbomachinery, neglecting the very high frequency electrical dynamics, while demonstrating
representative behavior of the end-to-end system. Thus the models execute in an acceptable time frame
for what would otherwise be an extremely stiff simulation. The resulting simulations of EAP systems are
appropriate for system-level control design and analysis. The objective of this User's Guide is to present
an overview of the usage of EMTAT. It describes some of the approximations made to accommodate
rapid execution, and some of the design tools that allow matching the model to component specifications.
It also provides an example of electrical system modeling using EMTAT.

1.0 Introduction
Control design and analysis usually involve the use of models of the appropriate fidelity: high enough to
capture the relevant dynamics but also able to execute in a reasonable time. With increased interest in
Electrified Aircraft Propulsion (EAP), there is a growing need for an easily accessible analysis tool that
combines rapid model development with faster-than-real-time execution in an industry standard
environment. The modeling of EAP systems for control design and analysis involves a multidisciplinary
approach accounting for the widely different dynamics of the turbomachinery, the power system, and the
thermal interactions involved. The Electrical Modeling and Thermal Analysis Toolbox (EMTAT) is a set
of Simulink® libraries designed to simulate a variety of power electronic devices, using both Physics
Based and PowerFlow calculations. EMTAT is designed to interface with the Toolbox for the Modeling
and Analysis of Thermodynamic Systems (T-MATS) (Ref. 1) as a complementary set of library blocks,
and as such it operates on a turbomachinery timescale. Due to the relatively slow time step of most
T-MATS simulations, on the order of milliseconds, the electronic devices can be assumed to be operating
at steady state over each time step. Steady state operation allows the electrical performance calculations to

NASA/TM-20205008125 2

be simplified, with all of the high-speed transients captured as efficiency losses. Note - this does not
replace high speed, high fidelity electronic simulation tools such as SPICE. However, since EMTAT
typically simulates 25x faster than real time on modern computers1, it is more useful for testing control
concepts. Steady state operation of electrical components, while smoothing out the high-speed electrical
transients, still demonstrates system dynamics in operation. Physics Based models also allow for realistic
heat outputs and thermal rises to be calculated, with the associated performance impacts.

EMTAT contains electrical component models that can be dragged and dropped into the workspace and
graphically connected to other blocks to form a model of a complete electrical system. EMTAT consists
of two types of blocks: PowerFlow (or Load Flow) and Physics Based. PowerFlow is a steady-state
method of modeling electrical systems. These models are based around lines linking different buses that
are connected to generators or loads (Ref. 2). PowerFlow modeling provides a number of advantages: the
overall system is modular (allowing for components to be added or removed easily), components may be
represented by equivalent circuits that match required fidelity, and simulation execution time is much
faster than real time (as noted above). Although these types of models come with many attractive
attributes, they also assume the model is in steady state. While the Physics Based blocks are capable of
modeling specific components due to physical performance parameters, and are in a sense higher fidelity
than the PowerFlow blocks, they also operate in steady state from the point of view of the
turbomachinery. This is because electrical transients are typically on the scale of microseconds (as
opposed to milliseconds for turbomachinery), so the electrical system transient dynamics can be largely
ignored since any perturbations will have fully settled out before the mechanical system has moved
appreciably. Thus at each integration time step of the turbomachinery, the electrical system is assumed to
be in steady state. With this assumption, the integration time step can be much larger than would be the
case if the electrical dynamics were specifically modeled, which in turn increases simulation speed. The
electrical dynamics are still accounted for as efficiency losses, which allow the heat generated by system
operation to be modeled. This steady-state modeling approach is important for the system-level
applications for which EMTAT has been designed because it enables faster-that-real-time execution in
most cases. Thus it lends itself to simulating missions, hardware-in-the-loop testing, and dynamic analysis
of system operation.

EMTAT was developed to work with MATLAB®/Simulink® software (The Mathworks, Inc.) and it was
written using Version 2019b. It is intended for use by industry, government, and academia; for that
reason, it is open source. All EMTAT equations were developed from public sources and all default maps
and constants provided in the EMTAT software package are nonproprietary and available to the public.
The software is released under the Apache V2.0 license agreement. At the time of this software release,
license terms and conditions were found at http://www.apache.org/licenses/LICENSE-2.0.

2.0 EMTAT Setup
The EMTAT User’s Guide applies to version 1.0 of the EMTAT software package, as developed by
NASA Glenn Research Center. The package consists of the EMTAT Library that integrates with
Simulink and contains the following sub-libraries: Physics Based Blocks, PowerFlow Blocks, and Solver
Blocks. In addition, the EMTAT package contains examples to demonstrate how systems may be created
using the Simulink libraries.

1The main workstation used for developing and testing this software had a 2.9 GHz quad core processor, 16 GB of
RAM, and ran Windows 10 Enterprise.

http://www.apache.org/licenses/LICENSE-2.0

NASA/TM-20205008125 3

2.1 Notation

The notation summarized in Table 1 will be used throughout the EMTAT User’s Guide.

TABLE 1.—EMTAT USER’S GUIDE NOTATION
Type Definition

Courier Font MATLAB function, Simulink blocks, or code (i.e.,
Simulink: From block)

Times New Roman Font Italics Variables (i.e., f(x)) or file names, block input/output
Arial Font File Paths (i.e., TMATS_Library\MEX) or hyperlinks
Platform: Name block Signify what library a block is taken from (i.e.,

Simulink: From block)

2.2 System Overview

EMTAT is a generic set of electrical component models that are packaged as a library that can easily be
used with MATLAB/Simulink to build simulation models. Developed to use graphical-based simulation
techniques to meet the requirements of industry professionals as well as academics, EMTAT combines
generic electrical and controls modeling capability with a numerical iterative solver to create a framework
for the creation of complex electrical system simulations. Numerical methods utilized by EMTAT include
Newton-Raphson iterative solving techniques along with a Jacobian calculation. EMTAT was designed to
interface seamlessly with T-MATS, allowing for the creation of complex thermodynamic and electrical
system simulations.

2.3 EMTAT Quick Start Guide

2.3.1 Installing EMTAT
To install EMTAT execute the following steps:

1. Download EMTAT from the GitHub server https://github.com/nasa/EMTAT, select the

“Download ZIP” button, and extract the files to a folder that can be accessed by MATLAB,
ensuring there are no spaces in the path name. Note that EMTAT was developed using MATLAB
v2019b in the Microsoft Windows 10 operating system; it is not guaranteed to work on other
operating systems or with other MATLAB versions.

2. Navigate to the directory of the desired released version of EMTAT in the downloaded zip file,
EMTAT_vXX.zip,2 in MATLAB.

3. New paths must be added manually to the pathdef.m file. Open the “Set Path” window by
selecting on the “Set Path” button in the MATLAB toolbar on the HOME tab and add the path
(\EMTAT) to the list. Select “Save” to save the path definitions; a message will pop up warning
that administrator privileges are required and providing the option to instead save the paths to a
new pathdef.m file. Save this file to a location on the MATLAB path. Note: this process will save
the current path list; before saving, it should be verified that no unintended paths are on the list.

At this point the EMTAT Library manual installation is complete. EMTAT modules may be found in the
EMTAT Library folders and specific components may be copied into your simulation as needed.

2In this document, XX is used to represent a wild card character or characters, such as a version number or
file name.

https://github.com/nasa/EMTAT

NASA/TM-20205008125 4

2.3.2 Un-installing EMTAT
To remove EMTAT, execute the following steps:

1. If paths were added manually to the pathdef.m file during installation, they must be removed

manually by re-saving the pathdef.m file after deleting the \EMTAT path from the file.

2. Delete the EMTAT folder from your computer.

2.3.3 EMTAT examples
EMTAT includes a number of example simulation models to help a user gain insight into how to use the
EMTAT Library to simulate electrical systems. To gain access to these examples, navigate to the
Examples folder under EMTAT. To open an example, navigate directly to the folder containing the
example and run the XX_setup.m file (or by opening the XX.slx file, in cases where a setup file does not
exist). The XX_setup.m script will execute every command necessary to set up that particular example,
which may include any of the following: loading variables to the workspace, creating paths, loading
busses, and opening the Simulink model.

2.3.4 Block help
Each EMTAT Library block has a help file that explains how to set up each block; therefore, the low level
functionality of each block will not be discussed in this document.

NASA/TM-20205008125 5

3.0 EMTAT Library Structure
The EMTAT Library contains three sub-libraries: PowerFlow, Physics Based, and Solvers.

• PowerFlow: This sub-library contains electrical blocks based on PowerFlow (load flow) analysis.
• Physics Based: This sub-library contains electrical blocks based on analysis of standard

operation equations using physical component values.
• Solvers: This sub-library contains the numerical solvers required to simulate a Physics Based

EMTAT system. These blocks are generic and can be used to create iterative solvers for a wide
range of systems, even outside of EMTAT.

EMTAT is intended to be an environment for building electrical simulations in Simulink with the goal of
dynamic analysis and controls design. The sub-libraries discussed above provide the basic building blocks
of a simulation, however, a user may be required to create new blocks and/or modify existing blocks to
meet their specific needs. The EMTAT Library has been developed specifically for that purpose.

NASA/TM-20205008125 6

4.0 EMTAT Simulation Creation
4.1 Simulation Setup

In many electrical systems, the inputs to each component alone are not enough to determine how the
system will respond. For example, the duty cycle and input power to a voltage converter are not unique
for a given output voltage, as it also relies on the output current which is determined by the rest of the
circuit. In order to resolve this, an electrical power state equation is used to solve for the input current to
the converter block. Calculating the power and the actual power are then used to calculate a power error.
During simulation, the power error is driven to zero by adjusting the input current value to change the
state at which the converter is operating (see Section 4.3 for more details), which is an iterative process.

The EMTAT software package contains blocks that allow for easy creation of an electrical model that
requires “outer loop” iteration (over time) and “inner loop” iteration to minimize the error at each time
step (Figure 1). The inner loop iterative solver blocks in the “Solver” sub-library apply a Newton-
Raphson method to iteratively solve for independent variables by monitoring dependent variables. For the
voltage converter example above, the dependent variable is power error and the independent variable is
input current. As with all Newton-Raphson techniques, a Jacobian is calculated by the solver; this
Jacobian is essentially a linear map of partial derivatives from the independent variables to the dependent
variables, which may change based on the system operating point and the degree of system nonlinearity.
In cases where the Newton-Raphson solver fails to converge within a user-specified number of
computations due to a non-linearity, the EMTAT solver blocks add robustness by recalculating the
Jacobian matrix.

Figure 1.—Sample simulation architecture for a dynamic system.

NASA/TM-20205008125 7

4.2 EMTAT Formatting

4.2.1 Simulink wiring
EMTAT uses a vectored input/output signal architecture to limit inputs and outputs to those that are
absolutely necessary. This means that many of the wires, which are the connections between modeling
blocks, represent arrays of numbers that must be structured correctly for the simulation to work properly.
The order of elements in these wires is given in the “help” page for each block; alternatively, the wire
definitions may be viewed by looking under the mask or by connecting the wire into a bus selector. In
general, if an output is not expected to be wired directly to another block, it will be placed in the Outputs bus.

4.2.2 Mask format
EMTAT makes extensive use of the subsystem mask tools in Simulink. Each EMTAT block comes with a
mask that has been created to allow the user to provide to the block any required parameter or setting that
must be defined. This facilitates the modeling process because the user is not required to have detailed
knowledge about electrical systems in order use EMTAT. The mask parameters for each EMTAT block
may be viewed by opening that block; an example of an EMTAT block mask can be seen in Figure 2.

Figure 2.—Sample EMTAT function block parameters mask.

NASA/TM-20205008125 8

At the top of the input mask is the name of the library block followed by a block description. The
variables that may be changed in the mask are listed in the parameters section, which may have multiple
tabs. Each mask parameter input description is formatted as: “Name_M – Definition [units, if applicable]
(matrix size, if applicable),” where the suffix “_M” denotes a variable defined in the mask. Check boxes
are used in cases where features can be enabled or disabled; variable names for these items have the form
“(VariableName)En_M”. At the bottom of the parameter dialog is a “Help” button that will provide more
information about the block when selected.

4.3 Solver Setup

The EMTAT solver block sets are based around two major components: an iterative solver and a Jacobian
calculator. The iterative solver makes use of the Newton-Raphson method to step a plant toward solution
and is described mathematically in Equation (1):

�
𝑥𝑥1
⋮
𝑥𝑥𝑁𝑁
�
𝑛𝑛+1

= �
𝑥𝑥1
⋮
𝑥𝑥𝑁𝑁
�
𝑛𝑛

− 𝑱𝑱−(𝑥𝑥𝑛𝑛) �
𝑓𝑓1(𝒙𝒙𝑛𝑛)
⋮

𝑓𝑓𝑁𝑁(𝒙𝒙𝑛𝑛)
� (1)

Variables 𝑥𝑥,𝑛𝑛, and 𝑁𝑁 are the independent variable, iteration number, and the number of independent and
dependent variables. 𝒙𝒙 is a vector of independent variables. 𝑓𝑓(𝒙𝒙𝑛𝑛) is the dependent variable as a function
of the independent variable. 𝑱𝑱−(𝑥𝑥𝑛𝑛) is the inverse of a Jacobian matrix as a function of the vector of
independent variables. In this context, the Jacobian is a square matrix of partial derivatives that linearly
map between plant inputs and outputs. It is defined by perturbing each plant input from an initial
condition, 𝒙𝒙0,to find the effect on the plant outputs, 𝑓𝑓(𝒙𝒙𝒏𝒏). A more precise mathematical description of
the Jacobian can be seen in Equation (2).

𝐽𝐽 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1(𝒙𝒙𝑛𝑛)
𝜕𝜕𝑥𝑥1

⋯
𝜕𝜕𝑓𝑓1(𝒙𝒙𝑛𝑛)
𝜕𝜕𝑥𝑥𝑁𝑁

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑁𝑁(𝒙𝒙𝑛𝑛)
𝜕𝜕𝑥𝑥1

⋯
𝜕𝜕𝑓𝑓𝑁𝑁(𝒙𝒙𝑛𝑛)
𝜕𝜕𝑥𝑥𝑁𝑁 ⎦

⎥
⎥
⎥
⎤

 (2)

EMTAT solver blocks work in two major steps. In the first step, the Jacobian calculator determines a
linear map of the plant. Starting at the initial condition, the Jacobian calculator sequentially perturbs each
input slightly, recording the results, and calculating the slope of each output as a function of each input.

Once this is completed for each input, the Jacobian is built, inverted, and sent to the Newton-Raphson
block. In the second step, the Newton-Raphson solver steps toward a solution using the inverse of the
Jacobian developed in the first step. This solver method makes the assumption that the plant is locally
linear, so it is possible that the solver will not converge to a solution when the system is (highly)
nonlinear. The help files for the blocks inside the solver include more information about the solver and
how it works. Additionally, if the solver cannot invert the matrix or the perturbations go outside the linear
range, the simulation will present the user with an error message detailing the problem at run time.

NASA/TM-20205008125 9

4.4 EMTAT Block Setup

The “PowerFlow” and “Physics Based” sub-libraries of the EMTAT Library contain the generic blocks
that may be combined to create electrical systems. A simple example of an electrical system, used
throughout this document, is a Motor Branch, (a Voltage Converter, Voltage Inverter, and a Motor in
series, as shown in Figure 3. Descriptions of the electrical system setup in this section assume the reader
has some understanding of power electronics. In this figure, the EMTAT blocks are represented by the
black bordered boxes, labeled appropriately. The forward outputs of each of the blocks are represented in
blue, while the feedback outputs of each block are represented in red. The solver block can solve multiple
simultaneous power balances at the same time, providing feedback to each block in turn.

Figure 3.—Motor Branch diagram.

GUESS BUS CURRENT

GUESS AC CURRENT GUESS DC CURRENT

POWER ERROR

POWER ERROR POWER ERROR
SOLVER

DC CURRENT

AC CURRENT

BUS CURRENT
AC VOLTAGE

BUS VOLTAGE

DC VOLTAGE

MOTOR

INVERTER

VOLTAGE
CONVERTER

POWER
SUPPLY

NASA/TM-20205008125 10

4.4.1 Independent and dependent variables
In a model of an electrical system, current from device to device is typically unknown and must be solved
for using numerical methods. EMTAT solver blocks can be used to drive the power errors (the difference
between input power and internally calculated power) to zero by changing the input electrical current of
any given device. When setting up the simulation, the number of independent variables must match the
number of dependent variables. Example variable definitions for the PowerFlow version of the Motor
Branch can be seen in Table 2 and the Physics Based version in Table 3.

It should be noted that although certain inputs may be known in some simulations, the user should not set
the known independent variables to constants and remove dependent variables from the solver. Minor
changes in the vector of independent variables may drive convergence to a point that does not exist,
which will result in the simulation crashing. It is more prudent to simply use the known value(s) in the
initial conditions of the independent variables and allow the solver to use the dependent variables to solve
for it. If the initial conditions are indeed the steady-state solutions, the final value of the independent
variables will remain close to, or the same as, the initial values.

TABLE 2.—POWERFLOW MOTOR BRANCH SOLVER INDEPENDENT
AND DEPENDENT VARIABLES

Dependent variables Independent variables
Power Error (converter) Current into converter
Power Error (inverter) Current into inverter
Power Error (motor) Voltage output

TABLE 3.—PHYSICS BASED MOTOR BRANCH SOLVER INDEPENDENT

AND DEPENDENT VARIABLES
Dependent variables Independent variables

Power Error (converter) Current into converter
Power Error (inverter) Current into inverter
DQ Space Voltage Error
(motor, 2 axis vector)

DQ Space Current into Motor
(2 axis vector)

NASA/TM-20205008125 11

4.4.2 iDesign
The Physics Based library blocks rely on internal component level physical parameters to calculate the
performance equations. Those values may not be intuitively understood by most users. iDesign is a
feature of these blocks that calculates these internal component values based on device operation
equations, system level parameters, or extrapolation from existing reference components. This feature
requires certain design or steady-state variables to be known and entered into their masks to work. Once
this information has been defined, the iDesign calculation can be run and it will directly update the mask
parameters for a given component. The specific required system-level parameters vary from block to
block; the help menu for each of these blocks should be consulted to determine what is required. See
Figure 4 for an example of the iDesign block compared to the variables input mask.

4.5 Customization

Although EMTAT blocks are designed to be as general as possible, a user may need to customize an
existing function within EMTAT or create an entirely new function to meet the needs of a specific
application. The user may make modifications as they see fit and is encouraged to share any meaningful
updates with the community at large. In order to make changes to an existing block without altering the
original block, the user must break the link between the library and the block in question. This can be
done by right clicking on the block in a model and selecting Library Link Break Link.

Figure 4.—Example EMTAT Physics Based Buck Converter input mask showing the Physical Parameters

and iDesign tabs.

NASA/TM-20205008125 12

5.0 Troubleshooting EMTAT
5.1 Convergence “Errors”

When running EMTAT blocks in a loop with solver blocks, the simulation will first act to converge the
plant using the integrated Simulink solver. Failures in convergence often result in Simulink notification of
errors in blocks that seemingly have nothing to do with the solver, such as integrators or state-space
blocks, which makes troubleshooting the error more difficult. This is why, if an error occurs when
running a model, the value of dependent variables (f(x)) routed to the solver should be checked first. If
any of the values are inf, NaN, or outside the specified iteration condition limits for the solver, the
simulation is not converging. It should be noted that in some cases EMTAT blocks will issue errors. The
reason for these errors will be clearly explained in the error message, and they will not be reviewed in this
document.

The root cause of a convergence issue may not always be obvious. Outlined here are a few ways to
troubleshoot a suspect simulation:

1. Double-check block inputs: Check for errors in the maps and constants used in the simulation.
2. Check solver inputs: Improper independent variable initial conditions, perturbation size, etc. may

cause the solver to get stuck in a local minimum that does not result in system convergence.
3. Check independent/dependent variable matching: Verify that all system independent variables and

dependent variables are accounted for in the simulation/solver.
4. Component testing: If data is available (from another example of the system) at the input and output

of each component, the simulation can be broken down to the component-level, feeding the inputs
observed from the other model to the inputs of each block. This can help isolate a specific block that
is not modeled correctly.

5. Steady-state testing: If the system is intended to be run dynamically, try running it in steady-state
first to identify if a problem with the solver parameters is contributing to the convergence problem.

6. Run without solver: Take out all the solvers and run the simulation with a constant input to each
independent variable; if there is another example of the system that the model can be compared
against, doing so can help find errors.

7. Analyze the Jacobian: It may be useful to look at the Jacobian (J), which shows the relationship
between independent variables and dependent variables in the system, as the solver tries to converge
to a solution. This value is located within the S_Data bus output from the solver blocks and can be
displayed using the Simulink: Display block. Given an understanding of which independent variables
should affect which dependent variables, the values of the Jacobian may be used to determine a
possible source of error in the model.

8. iDesign: The iDesign tools use system variables to calculate realistic internal component values, with
the caveat that these values may not match those of a given real system.

NASA/TM-20205008125 13

5.2 Crashing

There may be times when an EMTAT simulation will crash and issue a system error, causing MATLAB
to close unexpectedly. These internal errors typically arise due to errors in the execution of compiled code
(generally when the code attempts to access memory locations that it doesn’t have access to). This can
occur when:

• Attempting to access elements of arrays outside of the memory range (e.g., element 21 of a 15
element array).

• Using pointers incorrectly.
• Passing arrays to other functions by reference.

One such error has been observed when a length-1 vector or array is provided for a mask parameter used
for table lookup. If the simulation crashes, one of the first steps should be to check that the mask
parameters for each EMTAT module have proper length. It should be noted this is just one possible
reason for the crash, although a common one.

NASA/TM-20205008125 14

6.0 EMTAT Tutorials
The EMTAT software package is a set of blocks made in the MATLAB/Simulink environment that can
be used to model any electrical system. In order to help the user better understand how the various blocks
in the library can be assembled, the software package contains multiple examples. This tutorial will
describe their development and highlight important points that the user should keep in mind when
developing simulations. As a user works through the tutorial, it may be useful to have the corresponding
example from the EMTAT Library loaded for comparison.

6.1 EMTAT Example: BoostConverter_Example

This section will describe how to use EMTAT blocks to create a simple boost converter system. This
example is included with the EMTAT software download (BoostConverter_Example.slx). The
example is a steady state simulation of the Physics Based Boost Converter block. A boost converter
system is typically a stage in a larger electrical system simulation that provides a stable voltage reference
for an electrical bus. In broad terms, it takes an input voltage from a power supply, boosts the voltage
higher to a specified reference point, receives a current demand from the power sinks on the bus, and then
calculates the current demand on the power supply. Here are the necessary steps taken to re-create this
example:

1) Create the plant
In this example, the plant has four main external inputs: input voltage, output current demand,
duty cycle, and ambient temperature. The input voltage is from the power supply feeding the
block. The output current demand is fed back from the blocks or bus downstream. The duty cycle
is from a controller or solver. The ambient temperature is either fixed or fed back from a
temperature block (although we are not using temperature feedback in this simulation). The plant
has three main outputs: output voltage, input current demand, and power lost to heating. The
output voltage would be fed into other components downstream as the controlled bus voltage.
The input current demand would be fed back to the power supply feeding the boost converter.
The power lost to heating would be fed through a temperature block to calculate the internal
temperatures for performance adjustments.

The block requires an external integrator to drive the steady state error to zero, as well as to
prevent an algebraic loop. The solver takes the power error from the boost converter block as a
dependent input and calculates a guess input current to the block as an independent output. To
simulate the effects of a controller, we also use the solver to compare the output voltage to a set
point voltage, which will allow the solver to drive the duty cycle of the boost converter. In a
typical system the user might use a PID controller to adjust the duty cycle, but for simplicity sake
and to focus on the block itself, we used the solver instead.

2) Select the solver
The system has only constant input voltage and output current demands, so it is not time-
dependent and a steady-state solver block will be used. (TMATS: SS NR Solver w
JacobianCalc, borrowed from the T-MATS library.)

3) Connect the blocks
The outputs of the function blocks depend only on the inputs to the function blocks. The solver
block has been designed to accept a vector input and produce a vector output, requiring that the
outputs of the function blocks be multiplexed together and then wired to the input of the solver

NASA/TM-20205008125 15

block, f(x). The output of the solver, X, can be routed directly to the input of each function block,
as those blocks accept a vector input (see Figure 6 later in this section, where displays were added
to enable the user to observe results).

4) Set up the solver
Open the solver. The mask parameters need to be tuned per the application, which the iDesign
tool can assist with. The length of the vectors SJac_Per_M and SNR_IC_M must each be equal
to the number of independent variables or dependent variables in the system (which should be the
equal; in this case, 2). Open on the Boost Converter block in the Simulink window to view the
mask inputs for this particular case.

5) Configure the simulation
To avoid encountering errors when running the simulation, the solver options should be set up
prior to doing so through the “Configuration Parameters” window, accessed from the
“Simulation” option on the Simulink menu bar. Navigate to the “Solver” pane and select the
fixed-step, discrete solver as shown in Figure 5.

6) Run the simulation
At this point the system can be run. Select the green play button at the top of the Simulink model.
If the simulation solver options have been properly set up, the simulation will run successfully.

7) Execution is complete, interpret results
The displays will be populated with the solution to the equations (see Figure 6). The green tagged
elements are fixed constants in this simulation, the purple tagged elements are the combined
output bus. The orange tagged elements are internal calculations, the blue are outputs of the
block, and the red are feedback inputs from the solver. The element Converged in the S_Data
output vector shows whether the model has converged. This element will be 1 if the convergence
criteria have been met but will be 0 if the solver inputs, f(x), do not approach zero.

Figure 5.—Model configuration parameters setup.

NASA/TM-20205008125 16

Figure 6.—Run Boost Converter Example.

NASA/TM-20205008125 17

References
1. Chapman, J. W, et al, Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

User’s Guide, NASA/TM—2014-216638, 2014.
2. Gross, C.A., Power System Analysis, John Wiley & Sons, New York, NY, 1986.

	TM-20205008125.pdf
	Table of Contents
	Abstract
	1.0 Introduction
	2.0 EMTAT Setup
	2.1 Notation
	2.2 System Overview
	2.3 EMTAT Quick Start Guide
	2.3.1 Installing EMTAT
	2.3.2 Un-installing EMTAT
	2.3.3 EMTAT examples
	2.3.4 Block help

	3.0 EMTAT Library Structure
	4.0 EMTAT Simulation Creation
	4.1 Simulation Setup
	4.2 EMTAT Formatting
	4.2.1 Simulink wiring
	4.2.2 Mask format

	4.3 Solver Setup
	4.4 EMTAT Block Setup
	4.4.1 Independent and dependent variables
	4.4.2 iDesign

	4.5 Customization

	5.0 Troubleshooting EMTAT
	5.1 Convergence “Errors”
	5.2 Crashing

	6.0 EMTAT Tutorials
	6.1 EMTAT Example: BoostConverter_Example

	References

